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Chaotic advection in the velocity field of leapfrogging 
vortex pairs 

A Pintekt, T T61 and Z Toroczkait 
InstiitUte for Theoretical Physics, Eiitvas University, puskin U. 5-7. H-1088 Budapest, Hungary 

Received 21 November 1994 

Abshaci. The advection problem of passive tracer panicles in the time-periodic velocity field 
of leapfrogging vortex pairs is investigated in the context of chaotic scattering. We numerically 
determine a few basic unstable periodic othiu of the tracer dynamics. and the non-attracting 
chaotic set responsible for the motion of panicles injected in front of the vortex system. The 
latter wnsists of two pans: a hyperbolic component based on strongly unstable periodic orbits, 
and a non-hyperbolic wmponent that is close to KAM surfaces. The invariant manifolds of the 
chaotic set are also plotted and theu relevance for the panicle dynamics is discussed. The vacer 
dynamics has one single dimensionless parameter: the energy of the vortex system. As a new 
phenomenon, we point out the existence of stable bounded trajectories between the V M e X  pairs 
at sufficiently large energies. A quantitative characterization of the m e r  dynamics in terms of 
the so-called free energy function is given and the multifracCal spectrum of Lyapunov exponents, 
the escape rate and other characteristics of the transient chaotic motion are determined. 

1. Introduction 

The advection of passive wacer particles in non-stationary fluid flows has attracted recent 
interest since particle motion is generally more complex than the underlying velocity 
field [I-$]. Chaotic advection provides an appealing application of the chaos concept in a 
phenomenon observable by naked eyes. The connection with dynamical system theory is 
especially strong in two-dimensional incompressible flows where the latter property implies 
the Hamiltonian character of the particle motion. 

The investigation of chaotic advection in viscid flows 15-12] led to a better 
understanding of mixing in closed containers. The associated particle dynamics is then 
characterized by a bounded phase space. Advection in open flows [13-191 has the novel 
feature of having unbounded particle trajectories. Because of the asymptotic simplicity of 
the motion, the particle dynamics can be considered as a type of scattering process. In fact, 
the motion in time periodic flows can be chaotic, like, for example, that of particles coming 
close to the obstacle in a von K&& vortex street [17-191. Knowledge accumulated in 
the field of chaotic scattering [20-221 has turned out to be a powerful tool to describe this 
phenomenon. 

Chaotic advection in inviscid fluids typically occurs in the velocity field of interacting 
vortices [23-261. In systems of a few interacting point vortices one often finds both bounded 
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and unbounded tracer trajectories. Previous studies had certain difficulties with interpreting 
chaos associated with the unbounded motion. The aim of this paper is to show that this 
difficulty can be overcome by using recent results of the theory of chaotic scattering, or 
more generally of transient chaos 1271. 

In particular, we point out that for the scattering tracer dynamics there exists an infinity 
of unstable periodic orbits. In fact, the number of periodic orbits increases exponentinlly 
with their period. Periodic orbits provide a backbone for this dynamics in the sense that 
the particle might stay close to a periodic orbit for a while, then leave it and come into the 
vicinity of another one, and so on before escaping to infinity. The union of all the bounded 
unstable periodic orbits together with their heteroclinic and homoclinic connections forms 
a non-amacting chaotic set. The chaotic set possesses a stable manifold along which 
trajectories can reach the set itself. It is essential for the understanding of the advection 
problem that the stable manifold is an object of measure zero and provides afructul foliation 
of the space. This is why a particle has zero probability of being trapped forever by a 
periodic orbit, or by the entire chaotic set. Although the chaotic set itself is also a fractal, 
there exists a natural measure on it. Chaotic characteristics, like, for example, the average 
Lyapunov exponent, of trajectories coming close to the set can be computed by taking 
averages with respect to this natural measure [27]. 

We consider a simplified model of the so-called leapfrogging motion of two vortex 
rings. If the rings have the same sense of rotation, they travel in the same direction. 
In cases when the rings move along the same axis, the rear vortex ring attempts to pass 
through the front one. The leading ring then widens due to the mutual interaction and 
travels more slowly. Simultaneously, the other ring shrinks. travels faster and penetrates 
the first one. The process can then be repeated again and again. Recently Shariff and 
coworkers [28,29] have performed a detailed simulation of particle trajectories in the field of 
leapfrogging vortex rings in viscid fluids and found good agreement with smoke visualization 
pictures reported in experiments [30]. We shall study the two-dimensional analogue of this 
process in an inviscid flow: advection in the field of two pairs of ideal point vortices of 
the same strength exhibiting leapfrogging motion. It will turn out that this simple model 
faithfully describes the qualitative features of the advection in the field of three-dimensional 
leapfrogging vortex rings. At the same time its simplicity allows for precise calculations and 
a detailed investigation of the parameter dependence. Alternatively, the advection problem 
induced by two leapfrogging vortex pairs can also be considered as that induced by two 
vortices moving in front of a wall lying on the symmetry axis of the original problem [31- 
331. 

It is known that the integrability of the advection in the field of autonomous point 
vortices depends on the number of vortices and on the type of solid boundaries [34-371. 
Let us consider cases without external flows. In unlimited space, the tracer dynamics is 
always integrable if the number of vortices is at most two. With more vortices the tracer 
dynamics is non-integrable even if the vortex motion itself is periodic or quasiperiodic, like, 
for example, in the case of three vortices [23,35]. When the presence of solid boundaries 
breaks either the rotational or translational symmetry, the minimum number of vortices 
leading to non-integrability is decreased by one [36]. If both symmetrjes are broken, as 
in a general closed domain, even the advection induced by a single vortex, exhibiting 
periodic motion, becomes non-integrable [36,37]. In our problem a straight line boundary 
breaks the rotational symmetry and thus the advection generated by two vortices is already 
non - i n te gr ab 1 e. 

The paper is organized as follows. In section 2 the leapfrogging motion of two vortex 
pairs is described. Analytical results for the period and the average velocity are given in the 
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appendix. Section 3 is devoted to the discussion of the corresponding advection problem. 
We point out that the phenomenon is especially simple in a frame comoving with the centre 
of mass of the vortex pairs and is then invariant under certain symmetry operations. A 
few basic unstable periodic orbits are also determined. Next, in section 4, we turn to the 
investigation of the chaotic set responsible for the scattering tracer motion, and its invariant 
manifolds. We show that around the vortex centres there is always a region that cannot be 
reached by trajectories coming from outside and that region is bounded by a kind of KAM 
torus. Thus, because of the mere presence of the vortices, the advection dynamics is never 
purely hyperbolic. It has one single dimensionless parameter: the energy of the vortex 
system. The dependence of the advection on this energy is briefly discussed in section 5 .  
As a new phenomenon, we point out the existence of stable bounded trajectories between 
the vortex pairs at sufficiently large energies. The region of bounded motion outside of the 
vortex cores is separated by typical KAM surfaces. Simultaneously bounded chaos inside 
these KAM tori becomes easily observable. In the limit of very large energies the advection 
can be considered as a slight time-dependent perturbation of the advection in the field of 
a single vortex pair. A quantitative characterization of the tracer dynamics in terms of 
the so-called free energy function is given in section 6. It is emphasized that most of the 
important characteristic numbers can be extracted from this single function. The paper is 
concluded in section I with the discussion of some open problems. 

2. Leapfrogging motion of two vortex pairs 

The dynamics of point vortices in two-dimensional flows of ideal incompressible fluids, or 
of parallel vortex lines in three-dimensional ones, is a classical field of hydrodynamics. It 
was recognized by Helmholtz and other researchers at the end of the last century [31-33] 
that the equations of motion of a system of such vortices can be cast into a canonical form. 
The Hamiltonian of n interacting vortices reads as 

where ( x i .  yi) stands for the position of vortex i ( i  = 1, . . . , n) of strength K< in the ( x ,  y) 
plane, and r;,, is the distance between vortices i and j .  The value E of the Hamiltonian is 
constant in time and can thus be called the energy of the vortex system. The equations of 
motion are of the Hamiltonian form [31-331 

Note the analogy with the canonical equations of point mechanics when one identifies, 
for example, x and K Y  with the generalized coordinates and momenta, respectively. The 
equations can be rendered dimensionless by means of the transformations 

where K is a preselected vortex strength, and 1 denotes a characteristic length scale. 
It is known [34-41] that the motion of four or more vortices is, in general, chaotic. In 

this paper we study a case where the dynamics of four vortices is integrable: the motion 
of two vortex pairs of equal strengths that move in the same direction along a common 
symmetry axis perpendicular to the extension of both pairs (see figure 1). When interpreting 
the problem as the motion of two point vortices in front of a wall, the vortices in the lower 



K, = -k  

0 
Ks = -k 

Fgurr 1. Geometry of two leapfrogging vortex pairs. Relative 
and centre-of-mass coordinates are also indicated. 

half-plane appear as ‘mirror’ vortices introduced in the same spirit as mirror charges are in 
electrostatics. We shall call this version the symmetry-reduced problem. 

KZ 

2R 

The Hamiltonian of the system defined in figure 1 reads as 

H(xi ,xz9yi ,yd = - ( -2~r1 ,2+2Inr~,4+Inr1,4+Inrz ,3)  

The extra factor 4 missing in (1) appears here because the mirror vortex coordinates are 
not independent variables in the symmetry-reduced problem 1421. Since the centre-of-mass 
coordinate 

xo = (x1 + xz)/2 (5) 

2yo ( y ~  + yz) = constant (6) 
is conserved during the motion. 2y0 can be considered as the average width of the vortex 
pairs. In what follows we choose 2y0 as the characteristic length 

does not appear in H (is a cyclic variable), the conjugate variable 

1 = 2yo (7) 
and rescale the problem according to (3). It is then worth using, besides the centre-of-mass 
coordinates, the relative variables 

x, = xz - XI Yr _= YZ - Yc. (8) 
The energy conservation (4) provides us with the explicit form of trajectories in the 

relative coordinates as 

Bounded trajectories are present for energy values E > Er = 0 where qo real solution y, 
exists for x, + CO. The energy Es = 0 corresponds to a separatrix in phase space lying on 
the boundary between regions occupied by open and closed trajectories (figure 2). ?he latter 
correspond to strictly periodic motions of the vortex pairs, called leapfrogging [2&30]. In 
the remainder of the paper we concentrate on this region, E > 0. 

Because of the conservation of yo, there are only three independent dynamical variables 
left. Since the Hamiltonian depends on x, and y, only, their equations of motion form a 
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Figure 3. Leapfrogging motion for E = ln2. (a) Cycloid shaped hajectories of ihe hvg 

upper vortices in the standing reference frame, The initial condition taken is  XI(^) = - (+)OS, 
YIP) = 0.5. (b) The velocity of the centre-of-mass coordinate uo(t) = .Co(r) in Ute sfanding 
reference frame. The period and the werage velocity x e  T = 2.16 and i& = 1.83, mpectively. 

closed system (explicitly given in the appendix) that can be solved by direct numerical 
integrations. Figure 3(u) shows the cycloid shaped trajectories of the vortices in the 
standing reference frame. After solving for the relative motion, xo(t) is obtained by simple 
quadrature. We emphasize that the velocity U&) i o ( t )  of the centre of mass along the 
x-axis is not constant in c o n m t  to the usual two-body problem. Its average value rS0 (see 
figure 3(b)) is close to 2 for a broad range of energies. 

The period T ( E )  and the average velocity ijo(E) of the motion depends solely on 
the energy and can be expressed in terms of elliptic integrals (see the appendix). The 
dimensionless energy value belonging to the plots of figure 3 is E = In2 = 0.693 that we 
shall keep as an illustrative case also in the next two sections. 

3. The advection problem 

An isolated vortex of slrength K generates at distance r from its centre acirculational flow 
with a velocity field proportional in modulus to K/r .  The sbeam function * ( x ,  y). whose 
cross derivatives yield the velocity components U, and vy [31,32], is - ( ~ / ~ ) l n r .  In the 
system of n vortices these contributions ate superimposed, and one obtains 
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where r j ( t )  stands for the distance of point ( x ,  y) from vortex j .  Because the vortices 
follow their own dynamics, the distances r j ( t ) ,  and consequently also the streamfunction, 
are time-dependent. The velocity components at a given point ( x .  y )  and time t are then 
obtained as 

A passively advected particle simply follows the local velocity field, therefore, its equations 
of motion, sometimes called the Lagrangian dynamics, are given by 

Note again the canonical character of the problem in which the streamfunction plays the 
role of the Hamiltonian. 

The difference compared with the vortex motion is that the dynamics is now 
non-autonomous. The advection problem can be cast into a dimensionless form via 
transformations similar to (3). For the streamfunction we shall use the rescaling 11/ + 
( K I T ) * .  

In the particular case of the leapfrogging vortex pairs of equal strength (i.e. IC] = IC? = 
- ~g = - ~ q  = IC) the dimensionless streamfunction (IO) takes the form (cf figure 1) 

where 

with x l&)  and y&) being the solutions of the vortex problem studied in the previous 
section. Due to the periodicity of the vortex motion and the nonlinearity of (12), the motion 
of advected particles can be chaotic. 

It is particularly convenient to use a reference frame whose origin is comoving with the 
point (xo(t).  y = 0)  along the x-axis. We shall call this frame the centre-of-mass system 
(CMS) of the symmetry-reduced problem. The streamfunction valid in the CMS is 

(16) 
where vortex coordinates xz = - X I  = x, /2  relative to the CMS have to be used. 

Due to the subtraction of the velocity uo(t) from the field generated by (13)-(15), two 
instantaneous stagnation points P* are created in the CMS along the x-axis. Figure 4 shows 
the instantaneous streamlines and stagnation points at two different instants of time t = 0 
and t = T / 4 .  We use the convention that t = 0 corresponds to the configuration when the 
width of both vortex pairs is the same (yl  = y2 = yo). The stagnation points exhibit a 
periodic motion of period T / 2 .  The particles situated at these stagnation points have zero 
velocities and cannot follow the periodic motion of the geometrical points P*. The motion 
of the stagnation points, therefore, does not correspond to a periodic orbit of the advection 
dynamics. 

Both the advection dynamics and the motion in the frozen streamlines of figure 4 share 
some basic properties. The y = 0 line is an invariant curve, the motion restricted to it is 
dissipative and possesses two fixed points: an attractor and a repellor. This is not surprising 
since the dynamics on invariant surfaces of Hamiltonian systems are in general not area 
preserving [43]. In the instantaneous streamline pattern the two fixed points are the two 

*cMs(x, Y ,  2) = W ,  Y, t )  - uo(r)y 
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Figore 4. lnsrantaneous streamlines in the cw frame for E = LnZ at (a) t = 0 and (b) T/4. 
These configurations correspond to exweeme positions of the two stlgoation points P i ,  V is the 
central stagnation point at half-way between the vortices. 
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Figure 5. Stroboscopic map (taken at multiples of T/2)  of the 
dynamics wbicted to the y = 0 aris ofthe CMS for E = ln2. 
ObserveLeunstabIeandstablefixedp~intsatX;~~) = 71.114 
with slopes 34 and respectively corresponding to two 
hyperbolic period-1 orbits P i g )  shown in figures 8-10. 

stagnation points P+(+ while in the advection problem they are two other orbits Pz(l). 
The latter correspond the truly periodic motions of particles inside the region in which the 
geometrical points P+(-, are oscillating. 

In order to specify the position of the periodic orbits Pt(2) on the x-axis, we numerically 
solved the dynamics restricted to y = 0 in the CMS. In a similar spirit to [13], we determined 
a one-dimensional return map by computing the x-coordinate after a time difference of T / 2 .  
The result obtained at f = Omod T / 2  for E = In2 is given in figure 5. It clearly shows the 
existence of an attractor and a repellor point at x; = 1.1 14 and xT = -1.1 14, respectively. 
Note the rather large (small) value of the slope at the repellor (attractor) point. Being 
embedded into the ( x , y )  plane, these invariant points appear to be hyperbolic on the 
stroboscopic map of the full Hamiltonian dynamics. Thus the larger eigenvalue of the 
periodic orbit PI is the same number as the slope A = 34 of the map at x; .  

In order to study periodic orbits outside the x-axis, it is worth taking into account the 
symmetry properties of the velocity field. 

(i) The obvious invariance against the exchange of the vortex centres implies the 
periodicity of the velocity field with TI2  where T is the period of the vortex motion. 
Thus it is worth defining a two-dimensional stroboscopic map for the advection problem by 
taking snapshots with a time difference T / 2 .  

(ii) In the CMS a stronger symmetry also holds when applying the transformations: 

(4 XI(Z.) + XZ(U or (b) Y W )  -+ YW (17) 
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Figure 6. A few basic priodic orbits of the symmetly-reduced problem in the CMS. (a) An 
axisymmetric priod-2 OrbiL Coordinotes on the srroboscopic map taken at 1 = OmodTJ2 
are V1(0.0.575) and Vz(0.071). (b) Asymmevie periodic orbits: a period-l orbit and a 
period2 orbit around it. They gene- points Ht(0.9M.0.388), and H:(0.951.0.375) and 
H~(0,814.0,?46), respectively. on the stroboscopic map. 

together with changing the sign of the x-coordinate of the tracer particle (x  -+ - x )  in both 
cases. Because of the time-reversal symmetly of the vortex dynamics and the symmetry 
of the graph of the CMS velocity (figure 3(u)), the exchange (a) and (6) of the vortices 
connects configurations taken at some time i and T/2 - i. Thus the velociiy field fulfils 
the relation 

u ~ ( x . Y , ~ )  =V, ( -X ,Y.T /~ -O (18) 
u,(x, Y. t )  = - u ~ ( - x .  Y, T / 2  - t )  (19) 

for any 0 < t < T/2. As a consequence, a trajectory starting from some point (xin, yi.) 
at time t will have the same shape as the time-mversed trajectory started from (-xin, yio) 
at T/2 - t .  These trajectories will be mirror images of each other with respect to the y-axis. 
This implies that periodic orbits are either axisymmetric themselves or appear in pairs that 
are mirror images with respect to the y-axis. At times t = 0, T/4 (mod T/2) holds in 
addition that if a periodic orbit starts from (xin, yin), its mirror image orbit will start from 
(-xin, yi.). This property makes the use of stroboscopic maps taken at t = 0 or T/4 (mod 
T/2)  especially convenient. 

It is worth mentioning that these symmetries are due to the assumption that both vortex 
pairs are of equal strength (K, = KZ = K). In a model with different strength they would 
not be present. 

The 
axisymmetric orbit (figure 6(a)) is of period T .  Therefore it  generates two points VI 
and V, on the stroboscopic map taken with a time difference of T/2. This axisymmetric 
orbit is unstable, too, its eigenvalue is 8. We have also found a pair of asymmetric orbits 
of period T / 2  (figure 6(6), thin curve) defining fixed points H* on the stroboscopic map. 
These unstable trajectories stay mainly in one of the half-planes. Around them, there exist 
similar two-loop trajectories of period T (figure 6(6), full curve) each generating two points 
H$) on the stroboscopic map. 

Typical particle trajectories in the CMS are plotted in figure 7. Particles injected outside 
of the vortex system escape to infinity (figure 7(a)-(d)). Some of them follow a simple path 
(figure 7(u)) but some others exhibit a complicated motion before escaping. Long-lasting 

A few basic periodic orbits obtained numerically are shown in figure 6. 
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Figure 7. Tracer hajectorics of the symmetry-reduced 
problem in the CMS. (aXd)  Scattering vajectories with 
initial conditions (.rii,y%,) (a)  (2.0, 0.2), (6)  (20. 0.12), 
( c )  (2.0. 0.118) and ( d )  (2.0, 0.097). (e) Quasi-periodic 
motion with initial condition (0.5. 0.4). 

chaotic motion between the vortex pairs can be considered as a random walk among unstable 
periodic orbits. Thus, for example, on figure 7(a)  and (6) parts of the perjodic orbits shown 
in figures 6(a) and (b)  can, respectively, be seen. Particles put initially very close to one of 
the vortices do not escape and exhibit a periodic or quasi periodic motion around the vortex 
(figure 7(e)).  Thus, depending on the initial conditions, particle trajectories can be both 
bounded and unbounded. Correspondingly, the full invariant set can be decomposed into 
a part responsible for the bounded motion and into another one accessible by trajectories 
coming in from infinity. 
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Our numerical experience indicates that at modest values of the vortex energy, E < 0.9, 
chaotic sets responsible for bounded chaotic motion (e.g. in the vicinity of one of the 
vortices) must be very small. Therefore we shall concentrate in what follows on chaotic 
sets connected with scattering trajectories coming in from infinity. 

4. Invariant manifolds of periodic orbits, and the chaotic set 
Let us consider the non-trivial manifolds of the fixed points PI and 4 (denoted by W; 
and Wi, respectively) discussed in the previous section producing several heteroclinic 
intersections. Taking the stroboscopic section just at f = 0 or t = T/4 (mod T/2), the 
mkifolds W; and W; are mirror images of each other with respect to the y-axis. 

To help understanding, the schematic figure 8 illustrates the most important topological 
features of the manifolds' intersection pattern. One can define an interuction region S 
bounded by segment 90 of W; and segment P i 0  of Wf, where 0 is the first heteroclinic 
intersection point along both manifolds. Lobes formed by W; and the boundary of the 
interaction region are denoted inside (outside) S by Ei (Di) for i 0. The direct Lagrangian 
dynamics transforms each lobe E, (Di) after t = TI2 onto (Df+l). This rule extends 
the definition of the lobes for i 4 0. We use the convention that the first (last) lobe that lies 
inside the interaction region has label i = 0. Due to the Hamiltonian nature of the problem 
the area of all the lobes should be equal. 

A direct numerical computation of the manifolds W; and W; shows that their actual 
form is much more complicated than those depicted in the schematic diagram of figure 8. 
Figure 9(u) displays the first branches of W,6 and W; while the full unstable manifold is 
shown in fi,we 9(6). The complex form of the lobes, and so their non-trivial intersections, 
can be understood by also taking into account the axisymmetric unstable periodic orbit 
(Vi and V, on the stroboscopic map). It plays an essential role due to its relatively high 
eigenvalue. The first lobe EO comes close to VI, VZ and becomes strongly stretched along 
their unstable manifolds. Because of its strange shape, lobe Eo intersects DO in six points, 
which also implies that each lobe Ei has the same number of intersections with Di. A 
high-resolution investigation indicates the splitting of lobe E1 into many fine strips (not 
only in two as for Eo) due to the presence of other periodic orbits causing altogether 24 
intersections with DO (not shown). 

It is instructive to follow how the content of the lobes is evolving, i.e. the so-called lobe 
dynamics [4,9,24,441. One can observe that points from Ei "Dj spend time (i - j + 1) T/2 
inside S .  In particular, points escaping the interaction region after Tj2, independently of 
when they entered S,  lie in Do. Those spending just one time unit T/2 in the interaction 
region lie in Eon DO. The escape rate (Y is defined as the exponential decay rate of the time 
delay statistics, i.e. of the probability to find trajectories spending a time longer than nT/2  
trapped by the vortex system. Assuming the validity of this exponential form for any time 
(that does not hold exactly in general), we can estimate the escape rate as the logarithm of 
the area ratio between S and S -  DO. In our case this yields the approximate value (Y = 0.34. 

Flgure 8. Schematic diagram of the stable 
and unstable manifolds Wf and W; of 
the fixed points PI and P, in the CMS, 
respectively. on the stroboscopic map. 
Note that in the full problem the invariant 
manifolds have other bnnches ihat can be 
obtmned as the mirror i m a m  of W? m d  " 
Wi t&en with respct to the x-axis. 
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Fmre 9. The non-Wivial manifolds of p1.2 obtained numerically in the CMS at I = 0 mod T / 2 .  
(a)  The fim branches of the manifolds Wf and W;. (b) The full unstable manifold W;. The 
corresponding stable manifold Wr is just its mirror image with respect to the y-axis. The vortex 
centres are marked by full circles. 

The heteroclinic intersections of the manifolds W; and W; implies the existence of 
a Smale horseshoe and a chaotic set in the system. Correspondingly. unbounded particle 
trajectories might come close to this set and exhibit chaotic features. Since, however, the 
set is globally not attracting (that would contradict the Hamiltonian character) this chaos is 
necessarily of transient type restricted to finite time-scales [27]. In other words, particles 
can be trapped by the vortex system but, with the exception of a set of initial conditions of 
measure zero, sooner or later they escape. The union of the heteroclinic points between Wf 
and W; is a good approximation to the non-attracting chaotic set existing in the unbounded 
part of the phase space (unstable periodic orbits also belong to the set but they are close to 
the heteroclinic orbits and thus do not change the geometrical appearance). 
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The numerical construction of this chaotic set is very efficient by means of a method 
called the PIM triple algorithm. This method intrcduced by Nusse and Yorke [45] yields a 
long sequence of vcry short pieces of trajectories (called a saddle-straddle orbit) assumed 
to straddle a true orbit on the chaotic set. The algorithm is the following. Take a segment 
which crosses the stable manifold of the set, and iterate a number n of points distributed 
evenly on this segment. Measure their time delay, i.e. the time the different trajectories 
spend in the interaction region. Three neighbouring initial points with the property that 
the midpoint has the longest time delay are called aproper interior maximum (PIM) triple. 
Trajectories starting in the sidepoints of a Phl triple obviously straddle a filament of the 
chaotic set's stable manifold. Choose a PIM triple and, by distributing the same number n 
of points on it as originally, find a shorter one. Iterate this refinement until the length of the 
last PIM triple becomes shorter than a preselected value €1 < 1. Then, follow the evolution 
of the sidepoints of such a PIM triple as long as the distance between the trajectories is 
shorter than another preselected value €2 << 1 (€2 > €1). Next, start searching for a new 
PIM triple on the segment connecting the endpoints of these trajectories, and repeat the 
whole procedure again and again. The generated series of segments of length shorter than 

will cover the chaotic set in a coarse-grained description of resolution €1,  and the pieces 
of trajectories starting in the sidepoints of the narrowest PIM triple straddle an orbit on the 
chaotic set with accuracy €2. In order to avoid an overaccumulation of points on the KAM 
surfaces, we have used a slightly modified version of the original algorithm by choosing 
PIM triples at random, as worked out for generic Hamiltonian systems in [46]. 

The chaotic set plotted in this way is the invariant set felt by scattering trajectories 
(figure IO). It can clearly be divided into two parts. One of them contains s " u e s  of 
double fractal character that are approximately direct products of two Cantor sets. The 
deltoidal forms along the symmetry axis at the height of 0.6, and the ones at the two sides 
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0 
-1.5 '1 -1 -0.5 0 0.5 1 ?z 1.5 
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Figure 10. The chaotic set of the symmetry-reduced problem in the CMS obtained at I = 
Omod 712 by means of the m triple algorithm The parameters of the algorithm have been 
n = 10, fI = and fz  = IO4 (see text). Notice the dinct product stnretlln of the 
hyperbolic pM containing the main periodic points (P1.2, V1.r. H+,- )  and the dense spirals 
around the vortex cores forming the non-hyperbolic part. Note that the periodic points Pl,z are 
the exuemal points of the set. The vortex centres are marked by full circles. 
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of the plot at the height of 0.4 are of this type. The two latter forms are mapped onto 
themselves under the Lagrangian dynamics after a time T/2. The elongated structure on 
the bottom of the figure is the image of the deltoidal form on the symmehy axis but its 
direct product structure is less striking because of the strong stretching along the x-axis. 
These four blocks can be considered to be the hyperbolic component of the non-attracting 
chaotic set as they contain the strongly hyperbolic peifodic orbits (like e.g. P I , ~ , V ~ . ~  or 
H*) of the dynamics. The existence of such structures is well known for purely hyperbolic 
chaotic scattering systems [Zl, 221. 

In order to understand the spud-like pattems, we first mention that the white ellipsoidal 
regions around the vortices are obviously not accessible by scattering trajectories. These 
are the regions where the effect of one vortex is more pronounced than that of any other 
one and can therefore be called the vortex core for the Lagrangian dynamics. Inside this 
core the effect of the other vortices is just a weak perturbation, and the conditions of the 
KAM theory [47] are thus fulfilled. Tracer particles put into this regime can also exhibit 
bounded chaotic motion but the size of such chaotic regions inside the core is obviously 
very small at energy values less than E Y 0.9. The majority of bajectories will thus be 
quasiperiodic as illustrated by figure 7(e). The boundary of the core is a KAM torus. At 
first sight it appears rather smooth but an enlargement of the toms surface (plotted for 
convenience in polar coordinates in figure 11) shows that by approaching it from outside 
complicated structures appear with little islands and chaotic regions intertwined. It is worth 
mentioning that such ton surrounding the vortices are present in the advection induced by 
any number of vortices [48]. They provide a region where the Lagrangian dynamics is 
non-chaotic in spite of the strong chaoticity of the vortices and play an analogous role as 
coherent structures in two-dimensional turbulence 1491. 

It is known that around KAM tori periodic orbits of arbitrarily weak instability are 
present These orbits are nearly marginally stable and cannot thus be considered hyperbolic. 
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Figure 11. Magnification of the outer surface. of the core of vortex I ,  presented in polar 
coordinates I and 'p. Although if look rather smooth. many small tori me rolled up and Seem 
IO accumulate on the surface tha is a MM tomus. The plot has been obtained by starting 200 
trajectories on a small segment (0.63 c x c 0.7, y = 0.5). 



2204 A Phtek et ai 

1 2  

0.8 

y 0.6 y 0.6 

0.4 0.4 

0.2 0.2 

0 
-2 -1 0 1 2 -2 -1 0 1 2 

Y X 

-2 -1 0 1 2 -2 -1 0 1 2 
X X 

-2 -1 0 1 2 -2 -1 0 1 2 
X X 

F i p  12 Motion of a droplet of dye particles on the stroboscopic plane in the CMS taken at 
t = nT/2 with n 0. . , , , 5  (a)+‘). 5 x IO4 tracer particles were StaMd hom a disc of &ius 
0.05 centred itt (2.0.1). Obselve that &er only five time steps the ensemble of dye pariicles 
approaches the unstable manifold of the chaotic set very closely. This is always the case if the 
set of initial conditions m s e s  the stable manifold of the chaotic set. 

Consequently, the component of the chaotic set lying around these KAM tori will be called 
the non-hyperbolic component. Due to the weak instability of the periodic orbits here (the 
stickiness of the tori), the decay from this region is rather slow, and the local structure of 
the set is dense, as being characterized by a fractal dimensionality close to unity [SO]. 

The (un)stable manifold of the periodic point (4) PI is expected to come arbihady 
close to that of any other periodic orbit located in the unbounded part of the phase space. 
These manifolds together (more precisely, their closure) form the (&table manifold of 
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the chaotic set. In the CMS, the stable manifold at time t is mirror image with respect 
to the y-axis of the unstable one taken at T / 2  - t m d T / 2  (see equations (18). (19)). 
This equivalence of the manifolds is a consequence of the Hamiltonian character of the 
Lagrangian dynamics. Nevertheless, for the tracer particles the unstable manifold plays a 
distinguished role. 

To see this, let us imagine that particles are injected into the flow in front of the vortex 
system. If the point of injection is not close to the x-axis or more generally to the stable man- 
ifold of the chaotic set, then the injected particles will not be trapped and will be advected 
away by the flow quite rapidly. Otherwise, however, the particle will he attracted, because 
of the stable foliation, to a vicinity of the chaotic set where it spends a finite amount of time, 
and escapes finally along the unstable manifold of the chaotic set. Therefore, we conclude 
that dye particles remaining for a long time around the vortex system will trace out the 
unstable manifold. This is consistent with recent results on chaotic advection in open flows 
[ 17,19,24,28] showing that streaklines exhibiting fractal pattems asymptotically coincide 
with the unstable manifold of chaotic sets of the Lagrangian dynamics. (Streaklines [2,30] 
are defined as sets of points reached, at a given instant of time, by a continuum of particles 
injected at a given point into the flow at any previous time before.) This is also an exten- 
sion of the observations [5,6,8] obtained in closed flows claiming that dye particles move 
asymptotically along unstable manifolds of periodic orbits embedded in the chaotic sea. 

JJI a series of pictures (figure 12) we present how a droplet of dye particles put into the 
flow in front of the vortex system evolves. It illustrates nicely the convergence toward the 
unstable manifold of the chaotic set. The shape of the structure traced out by the ensemble 
of droplet particles after time t = 5T is given in figure 13 letting both the upper and lower 
half-planes and a few lobes from the tail of the chaotic set's unstable manifold be seen. 
The resemblance with the flow visualization picture of two leapfrogging vortex rings [30] 
is striking although the latter was made with three-dimensional rings in a real fluid. 
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Figure 13. Unstable manifold of the full chaotic set in the CMS on b e  scale. The shape of 
the droplet at t = 5 7  and its mirror image with respect to the x-axis a ~ e  displayed, (In order 
to increase the density of points we plotted all images of the droplet points t h l  remained in 
the region shown after i = 5T up to at most t = 607.) It has a similar form as the Row 
visualization panem in an experiment with three-dimensional vortex rings [301. 
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5. The energy dependence 

Up to this point we have focused our attention to the case of a given vortex energy E = In2 
which illustrated the basic features of the dynamics. By increasing the energy slightly 
further, the axisymmetric hyperbolic periodic orbit (Vc and VZ on the stroboscopic plane) 
becomes a stable elliptic one. In figure 14(a) we have plotted the unstable manifold of 
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Figure 14. Invariant SW in the cMs for E = ln2.5 = 0.916 al f = OmodTf2. ( a )  Unstable 
manifold of the chaotic set obtained by using the droplet method with t = 5T (cf Rgures 12 
and 13). The fixed points Vi and Vz are now elliptic ones. (b) Magnification of the regular 
island near VI, The plot ha been obtained by starling 100 tmjectories on the vertical segments 
x = 0 and x = 0.075, 055 c y c 0.8. and plotting Le first 200 iterates on the stmboscopic 
map. The vortex cenves are marked by lull circles. 
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Figure 15. Invariant sets in the CMS for E = in25 = 3.21 at I = OmodTJ2. The unstable 
manifold (full curve) of the chaotic set is obtained by using the droplet method with f = 5T 
(cf figure 12). Note that only a small part of the internction region is availnble for scattering 
ajectories restricted to narrow regions of linear size of order nround P l , z .  The interior 
structure occupied by bounded trajectories have been visualized by starting 100 trajectories on 
the venical line x = 0 and plotting the hnt ZCi~iterater on the stroboscopic map, The vortex 
centms are marked by full circles. 

the chaotic set at E = I n 2 5  One can observe two large islands around VI and V, and 
KAM tori on the boundary of them. The insides of these islands correspond to a bounded 
motion of the advected particles alternatively 'kicked' by the vortices. These regions are 
inaccessible by scattering trajectories and can only be seen by injecting particles inside of 
the vortex system. The structure of the phase space around the elliptic point VI is shown in 
figure 14(b). One can also clearly see the period-four stable periodic orbit just appeared, and 
the narrow bounded chaotic region around them. It would be interesting to check whether 
such bounded tracer motion could also be seen experimentally between two leapfrogging 
vortex rings. 

By increasing the energy much further, bounded motion starts to dominate the dynamics. 
As an illustrative example we have plotted the unstable manifold of the chaotic set for 
E = I n 2 5  (figure 15). Most of the central region is unaccessible by scattering trajectories. 
To illustrate this we have started 100 trajectories on the vertical line x = 0. One can clearly 
observe that besides the quasiperiodic motion there is also bounded chaotic motion in a 
layer close to the vortices. In addition to the large tori, many others show up on smaller 
scales which are either black or white regions in figure 15, depending on whether the x = 0 
axis, where the trajectories start, intersects the tori (or their image). 

Obviously the limiting case E >> 1 corresponds to the advection in the field of a single 
vortex pair of strength 2 exposed to small periodic perturbation. The linear size of the region 
containing the two vortex cores and the two large KAM tori drastically shrinks with energy as 
it is of the order of exp ( - E / 2 ) .  Note, however, that the size of the interaction region is of 
order unity, also for E -+ 63. (The position of P*, that is very close now to that of Pip), is 
x* = &w'3/2 at any instant of time.) It is worth mentioning that the streamfunction in this 
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limit is similar to that of the oscillating vortex pair studied by Rom-Kedar ef al [24]. The 
structural similarity of the two problems suggests that chaos in Melnikov's sense is present 
in the advection of leapfrogging vortices for E >> 1 too, but its strength is diminishing as 
E -+ M. 

6. Quantitative characterization of the tracer dynamics 

Early attempts to understand passive advection in the field of ideal vortices [24,26] clearly 
reported about transient features of the dynamics. They gave a detailed characterization of 
escape but had difficulties in interpreting the motion as chaos because of the positivity of the 
Lyapunov exponent on finite time-scales only. Recent developments in the field of transient 
chaos [27] and chaotic scatteriag [2&221 help to overcome this difficulty by introducing 
the concept of natural measure on the non-atmcting chaotic set, and the Lyapunov exponent 
taken with respect to this measure. The latter is thus a kind of ensemble average and is 
positive for transient chaos, too. 

A central object in the theory of chaotic scattering [2&22] is the time delayfunction 
describing how the time spent in a region around the chaotic set depends on the initial 
conditions. In practice, one takes a one-parameter family of initial conditions and measures 
the number of periods the particle needs to leave a neighbourhood of the chaotic set as a 
function of the parameter. The time delay function of our model for E = In 2 is shown in 
figure 16. This function takes on an infinite value whenever the initial condition falls on 
the stable manifold of the chaotic set. These infinities thus appear in a fractal pattern. As 
the set of infinities is a kind of projection of the chaotic set along its stable manifold, the 
former has the same dimension do as the partial dimension [52] of the chaotic set on the 
stroboscopic map. 
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Figure 16. l i m e  delay function n(y )  for E = In2 w h e n  is the number of periods TI2  spent in 
1x1 c 1.3. Trajectories were stand on the x = 1.3 line. The first two levels in the hierarchical 
organization at also shown. 
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In our numerical experiments 5 x IO4 trajectories were started on a vertical line of length 
0.1 at x = 1.3 with uniform distribution and we measured after how many time periods of 
T / 2  they crossed the vertical line at n = -1.3. The well defined blocks of singularities in 
figure 16 correspond to the cross section of the initial line with the lobe (cf figure 9(a)). 
Since all these lobes are topologically similar, each of them contains the whole information 
about the dynamics and the investigation can be reduced to one of them. 

Trajectories characterized by different time delay values mark different levels of a 
hierarchy. A quantity of central interest that reflects the hierarchical organization of chaotic 
scattering processes is the free energy F ( @ .  It characterizes the scaling behaviour seen 
by following trajectories with an increasing number n of periods inside the interaction 
region [51]. Let I?) denote on each level n the length of intervals where the time delay 
function is greater or equal to nT/2 (see also figure 16). In the spirit of the thermodynamic 
formalism of dynamical systems [51], the free energy is defined via the relation 

where 

with n. Thus, 

is an arbitrary real number, n >> 1, and &(n) is the number of intervals at level n. 
The escape rate U describes the exponential decay of the total interval length Ci l?) 

U = F(1). (21) 
As long as no KAM tori are present or their role is not essential, 01 is non-zero, ,and Iju 
yields the average chaotic lifetime of scattering trajectories. 

The topological entropy KO can be defined as the quantity characterizing the exponential 
growth of the number No(n) of intervals with the level index n.  Since the total number 
NO@) of intervals is obtained from (20) at @ = 0. we find 

KO = -(BF(B))lp=o. (22) 
Further important characteristics are the average Lyapunov exponent 5: taken with respect 

to the natural measure, and the fractal dimension & of the singularities in the time delay 
function. They can be obtained [51] as the derivative of p F ( p )  taken at unity and as the 
value of p where the free energy vanishes, respectively, i.e. as 

and 

F(do) = 0. (24) 
In the presence of KAM surfaces, the distribution of trajectories staying for a given 

time in the interaction region decays more slowly than exponentially [50,53] and the long- 
time behaviour is dominated by scattering trajectories staying close to the surface for long. 
Since the decay of the statistics, and of the total length of the scales !;) is no longer 
exponential in n ,  both the escape rate and the average Lyapunov exponent should be zero in 
the asymptotic limit [54]. On general grounds one expects [50] that the fractal dimension 
tends to unity. 

In figure 17 we have plotted the time delay statistics based on the time delay function 
of figure 16: the number of trajectories N ( n )  with time delay larger or equal than a given 
number n times T/2. For E = In 2 a crossover between exponential and algebraic behaviour 
can be observed around n = 15. For large n the scaling is algebraic due to the 'stickiness' 
of the tori, and we have found N ( n )  - ndU with U rr 2. Short orbits do not feel the 



0.5 

-0.5 

-1.5 - 
-2.5 - 

8 - 
-3.5 

-4.5 

-5.5 

influence of the ton and their scaling is governed by the hyperbolic part of the chaotic set. 
Indeed a well defined escape rate 01 = 0.22 can be derived from the slope of the straight 
line for n c 15. The escape rate computed from the area of the lobes is nearly a factor 
2 larger due to the crude approximation used there. It is worth noting, however, that for 
orbits started close to the outer surface of the vortex cores we have found a much slower 
algebraic decay in the time delay statistic$ with U N 0.6. This can be explained by the fact 
that typical scattering trajectories do not approach the vicinity of the core's surface. The 
core appears to be surrounded by a rather smooth surface that seems to be impenetrable for 
them, on finite time-scales at least. 

For E = In2.5 no exponential decay can be observed, the dynamics is dominated by 
non-hyperbolic effects. The algebraic decay exponent U does not seem to depend strongly 
on the vortex energy. 

In view of these observations we conclude that the computation of the free energy from 
the [ow-lying levek of the hierarchy enables us to obtain relevant information about the 
statistical properties of the hyperbolic component of the chaotic set as long as the energy 
is relatively small. So the results derived here are valid for not too long orbits (with time 
delay shorter than - 15 for E = In 2). 

The free energy for E = In 2 computed ftom levels 4 and 5 is plotted in figure 18. For 
j3 c 0 the shortest intervals dominate the partition sum (20). Since the number of initial 
points influences essentially the resolution of the smallest intervals, for p -= 0 one can 
observe a convergence with increasing number of trajectories. Although the free energy we 
obtained is not yet reliable for j3 < 0, in the range j3 > f it seems to be converged. Thus 
we can read off the most important characteristics. For E = ln2 we thus obtain for the 
fractal dimension, the average Lyapunov exponent and the escape rate 4 = 0.83,x = 1.18 
and IY = 0.22, respectively. The topological entropy is KO = 1.87 with a relative error of - 10% due to the uncomplete convergence at j3 = 0. 
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Figure 18. The free energy function as obtdned from (ZO), from levels &5 for E = InZ. The 
convergence for ,9 < 0 with increasing numbers of initial points lo', 5 x IO', IO5 and IO6 
(taken on the interval x = 1.3,O.Ol < y 8 0.1 1) can also be seen. 

The free energy pF(p) is the Legendre transform of the multifractal spectrum S(A) 
of the local Lyupunov exponents A 1.511. Our results show that the latter spectrum can be 
obtained in a natural way by using the analogy with chaotic scattering, a method that is 
simpler than others based on directly following the deformation of material lines [55].  

Since the chaotic set changes with energy, its properties also depend on this parameter. 
Larger energy implies smaller escape rate and larger fractal dimension. We have found that 
the approximate relation [56] 

- 
A(1 -4)  N U  (25) 

is satisfied in the energy range 0.4 c E c 0.9 investigated. We also found that the average 
Lyapunov exponent does not change significantly, thus, the escape rate is proponional 
to 1 - do. As the former was found to be a linear function of E in this range, we obtain 

(26) 
We could not deduce any systematic change of the topological entropy due to the relatively 
large errors. 

do Y 0.83 + 0.2(E - In 2) .  

7. Concluding remarks 

The advection problem in the time-periodic velocity field of two leapfrogging vortex pairs 
has been shown to comprise a variety of phenomena known to characterize different types 
of nonlinear systems. The invariant set can be divided into two parts depending on the 
boundedness of trajectories associated with it. One part is responsible for the motion of 
particles that never leave the vortex system. It certainly contains a component connected 
with bounded chaotic motion of tracer particles. The boundary of this part is formed by 
KAM tori. The other part of the invariant set is accessible by scattering trajectories belonging 
to particles injected into the flow far away from the vortices and exhibiting chaos on finite 
time-scales. It consists of a hyperbolic component the backbone of which is a fractal set 



2212 A Pdntek et a1 

of strictly hyperbolic periodic orbits, and a non-hyperbolic one that is located close to the 
outer surface of the KAM tori. We claim that the coexistence of these different types of 
invariant sets is characteristic for general advection problems in open incompressible flows. 

Whether bounded or scattering chaos dominates the tracer dynamics depends strongly 
on parameters of the flow. in our case on the total energy of the vortices. The latter 
is roughly speaking proportional to the compactness of the two-vortex-pair system. Our 
investigations showed that for loosely bounded pairs ( E  < ln2) it is hardly possible to 
find initial conditions numerically that lead to permanent chaos, and any kind of bounded 
motion can only be restricted to the cores of the vortices. At higher energies trajectories 
can be bounded in a region lying between the vortex pairs, too. Interestingly, the surface 
of KAM ton on the boundary of these regions seems to be rougher than that of the KAM 
ton on the boundary of the cores. Bounded chaos becomes more and more dominant 
with increasing energy while scattering chaos becomes suppressed. At even larger energies 
regular motion starts to characterize the problem since the limit E -+ 00 corresponds to so 
strongly bounded vortex pairs that they can be approximately replaced by one single pair. 
The advection problem is integrable in this limit. 

The scenario briefly sketched above contains open problems that could be subjects 
of further studies. It is not yet completely understood how the strongly hyperbolic 
axisymmetric orbit will be elliptic in a narrow range of energies (between E = 0.7 and 0.9). 
Its bifurcation diagram, as well as of other periodic orbits, could be interesting to follow 
with the energy. 

We have not yet mentioned what happens to the advection dynamics at very low energies. 
Our results show that the overall qualitative picture is similar to that found at E = ln2, 
the quantitative characteristics, however, change drastically for E + +O. In particular, the 
escape rate and the average Lyapunov exponent seem to diverge in this limit, while the 
fractal dimension seems to tend to zero. This raises the question of what happens when 
crossing the line E = 0 from the side of negative energy values where the vortex motion is 
not bounded. It is possible that a chaotic set will be created suddenly at E = 0 very much 
in the same spirit as in the course of abrupt bifurcations [57]. This, however, can only hold 
for the hyperbolic component. The entire process should be more complicated due to the 
presence of KAM tori around the cores, and certainly deserves further attention. 
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Appendix. The equations of the vortex dynamics 

Introducing the coordinates XO, x, and 2y0, y,/2 of (5). (6) and (8) as new variables, that 
corresponds to a canonical transformation, the Hamiltonian (4) reads as 
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The equations of motion are obtained in the form 

Choosing the conserved coordinate 2y0 as the length scale 1 (7) formally means replacing 
2y0 by 1. The first two equations form a closed system and can be integrated numerically 
to describe the relative motion of the vortices. The third equation (A4) gives the net 
translational motion of the centre-of-mass coordinate. 

Using equations (A2)  and (9), 

follows, where A E e-‘. The functional form of y,(xr)  is given by (9) as 

Here we have used the abbreviations y Jm, and ,3 = .,/-. From 
equation (9) one easily sees that the trajectory is symmetric to the axes x p  = 0 and yr = 0, 
and therefore it is sufficient to integrate (A6) from xr = 0 to the maximum value y of x, 
which corresponds to a quarter of a period. Thus for the period T follows 

This can be written as the sum of three terms: 

T = 2 A ( 9  - 2Sz + S,) 
with 

where U, = 2i - 3 ( i  = l , 2 , 3 ) .  These quantities can be expressed in terms of elliptic 
integrals [%I. Inserting Si we find for the period T 

where K ( A )  and E ( A )  are the complete elliptic integrals of first and second type, 
respectively. Using the asymptotic expansion of these elliptic integrals for A << I [SSl, we 
find in the high-energy limit ( E  >> 1) that the period can be expressed as 
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Figure Al. The period T (diamonds) and the average velocity 50 (crosses) of the leapfrogging 
motion of the vortex pairs as a function of enagy E (cf equations (A12) and (A16) where 
A =e-€). 

Analogously, one can obtain the energy dependence of the mean velocity 
T - U0 = - 1 io( t )dt .  (A141 

Using equation (9). (A4) takes the form 
n 
L 

.too=-- A .  
1 -r: 

By means of (A6) and (A10) we obtain 

Proceeding similarly as for the period, finally one finds 
- A*E(A) 
U0 = 

E ( A )  - (1 - A * ) K ( A )  ' 
The functions T ( E )  and i&(E) are plotted in figure Al. Observe that even at relatively 

small energies (E > In2) the mean velocity is practically independent of E. Using the 
series expansions for elliptic integrals one obtains 

(-418) 
- uo - 2 - :,-,E + . . . 

implying that the saturation value 2 is reached exponentially fast with increasing energies. 
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